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Abstract—In this paper, a mixed potential integral equation
(MPIE) formulation for hybrid microstrip-slotline multilayered
circuits is presented. This integral equation is solved with the
method of moments (MoM) in combination with Galerkin’s
method. The vector-valued rooftop functions defined over a
mixed rectangular-triangular mesh are used to model the electric
and magnetic currents on the microstrip and slotline structures.
An efficient calculation technique for the quadruple interaction
integrals between two cells in the system matrix equation is
presented. Two examples of hybrid microstrip-slotline circuits
are discussed. The first example compares the simulation results
for a microstrip-slotline transition with measured data. The
second example illustrates the use of the simulation technique
in the design process of a broadband slot-coupled microstrip line
transition.

1. INTRODUCTION

HE METHOD of moments (MoM) has been widely used

for the analysis of general 3D structures [1] and pre-
dominantly planar microstrip and slotline structures [2]-[16].
Several commercial MoM software packages for the analysis
of microstrip and slotline circuits have emerged in recent years
[17]-21]. Most of them have the restriction that a uniform
rectangular mesh is used. This implies that the designer
must carefully consider what cell size to use in order to
best approximate the geometry of interest with the resulting
metallization mesh.

Flexible meshes consisting of different types of rectangular
and/or triangular cells overcome the geometrical limitations
of a uniform mesh. Recently, some research groups have
started to investigate the use of triangular meshes and mixed
meshes of rectangles and triangles. Chang and Zheng [10] have
developed the P-mesh algorithm. This algorithm is derived
from the application of the MoM to a spatial domain mixed
potential integral equation governing the behavior of a mi-
crostrip circuit. Rectangular cells are used in the transmission
lines of the microstrip circuit, while triangular cells are used
to represent the microstrip discontinuities. The expansion and
test functions are the classical vector-valued rooftop functions
with rectangular or triangular support. Horng et al. [11] have
investigated the compensation of microstrip discontinuities
using vector-valued triangular subdomain functions as both
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expansion and testing functions in the MoM. In [11], the
electric field integral equation is solved in the spectral domain.
A mesh consists of one or more different types of triangles.

In this paper, a new research contribution to the application
of mixed meshes in the MoM modelling of planar circuits is
presented. The mixed potential integral equation (MPIE) for-
mulation is extended to govern the electromagnetic behavior
of hybrid microstrip-slotline multilayered circuits. Magnetic
surface currents are introduced at the slotline structures to
represent the tangential electric field in the slotline apertures.
A mixed mesh of rectangular and triangular cells is used to
model the electric and magnetic currents on the microstrip
and slotline structures. The Green’s function kernels can be
represented by classical Sommerfeld-type integrals. For these
integrals accurate and efficient numerical integration schemes
exist [22], [23].

The MPIE formulation has been favored over the electric
and magnetic field integral equation formulation [14], [15]. In
comparison with the components of the electric field Green’s
dyadic, the Green’s functions in the MPIE formulation are less
singular, i.e. they only exhibit a 1/p singularity instead of the
1/p® singularity in [14] (p = |r — 7| represents the lateral
distance between an observation point 7 and an excitation
point 7). This makes the evaluation of the interactions between
two cells more simple and stable. Moreover, unlike the EFIE
Green’s dyadic components the MPIE Green’s functions do
not depend on the direction of the vector which connects
the excitation and observation point, i.e. the MPIE Green’s
functions are one-dimensional functions of p. Our algorithm
makes use of this property.

The MPIE is solved in the spatial domain using the method
of moments. A spatial domain approach makes it possible
to perform the computationally expensive calculation of the
Green’s functions once and store the data for future sim-
ulations of circuits printed on the same substrate. A mesh
maker has been developed to mesh any planar circuit of
arbitrary polygonal shape in triangles and rectangles. Using
this mesh the unknown electric and magnetic current density
can be expanded into rooftop functions. The application of
the Galerkin MoM reduces the computational burden to the
calculation of the spatial interaction integrals between two
cells in the inferaction matrix equation Z - I = V and to
the solution of this matrix equation. This solution provides the
amplitudes of the current expansion functions.
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Fig. 1. Picture of a general microstrip-slotline planar structure embedded in

a multilayered medium. :

An analytical calculation technique for the quadruple in-
teraction integrals between two cells in the system matrix
equation Z - I = V is discussed in Section III. For each
interaction integral the Green’s functions are approximated
using a local power series expansion of p. The number of
expansion terms depends on the distance between the cells.
With each power term a quadruple power-moment integral is
associated. An analytical technique has been developed for the
calculation of these quadruple integrals. Recurrence relations
make the calculations very efficient. For distant coupling a
Taylor’s series approximation of the powers of p is used to
speed up the calculations significantly.

The last section of the paper presents some numerical
simulation results for two practical hybrid microstrip-slotline
structures. The first example shows the simulation results for
a microstrip-slotline transition. These results are compared
with theoretical and measured data found in the literature. The
second example illustrates the use of the simulation technique
in the design proces of a broadband slot-coupled microstrip
line transition with a maximally flat transmission characteristic
in the X-band.

II.' MIXED POTENTIAL INTEGRAL EQUATION FORMULATION
FOR HYBRID MICROSTRIP-SLOTLINE STRUCTURES

The geometry of a general hybrid microstrip-slotline struc-
ture embedded in a multilayered medium is depicted in Fig. 1.
A microstrip circuit Sy, consists of a finite metallization pat-
tern at a dielectric interface, while a slotline circuit S consists
of a finite aperture in a infinite metallization pattern. The
tangential electric field at the slotline circuits is represented
by an equivalent magnetic surface current density M (r)y =
u, X E(r). The vector u, is the unit vector normal to the planar
structure. The introduction of an equivalent magnetic current
in the slotline structures reduces the meshing of the infinite
metallization patterns at the slotline levels to the meshing of
the finite slotline apertures.

An incoming electromagnetic field E™, H'™ induces electric
surface currents J,(r) at the microstrip structures Sy, and
magnetic surface currents M,(r) at the slotline structures
S,. In terms of vector and scalar potentials, the electric and
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magnetic field due to these surface currents are given by {16]

E&%:ﬁuﬂﬂ—VVﬂﬂ—éVxF@) (1)

H(r) = —jwF(r) - VVF(r) + i—_v <Al @

where
:A
A(’r):// G (r,r) - Js(r')dS’ 3)
S )
:F
Firy= [l G (r,v') - M(+')dS’ 4)
J
and

VA(r) = _]iw// GVA(r, 7V - Js(r)dS’ )
S,

m

V) = // GVe (r, )V - M(r)dS' (6
J 5 :

=A =F
G (r,r') and G (r,7’) are the Green’s dyadics for the -
magnetic and electric vector potentials A(r) and F(r) in
the layered medium and GV4(r,7’) and GV7 (r,7’) are the
corresponding scalar Green’s functions for the electric and
magnetic scalar potentials. The scalar potentials V4(r) and
VF(r) are related with the vector potentials A(r) and F(r)
by the Lorentz gauge [16].

For the description of the horizontal fields in a multilayered
medium, the Sommerfeld potentials are very suitable [16].
With this type of potentials, the dyadic Green’s functions for
the magnetic and electric vector potentials are of the form

ﬂ =
G (Tvrl) :ItGg(p’ 2, z,) + "zvgaft(p: z, zl)

+ 'u’zGlzqz (p7 Z, Z/)uZ (7)
:F =
G (Tarl) = Itht(pa 2, zl) + uzv;Gf’t(pa 2y Z/)
+u.GE (p, 2,2 )u, 8)

where 1, = u,u, +u,u, is the tangential unit dyadic and p =
V/(z = ’)? + (y — v')? is the horizontal distance between the
source and the field point. Only three scalar potential functions
are needed to represent the nine components of the Green’s
dyadic for the vector potentials in a layered medium.

The mixed-potential integral equation formulation for hy-
brid microstrip-slotline circuits follows from the boundary
conditions of the tangential electric field at the microstrip
surface S,,, and the tangential magnetic field at the surface S,
of the slotline apertures. Starting from the Sommerfeld forms
(7) and (8) for the vector potentials in the layered medium, we
can derive the following integral equations in the unknown
surface currents:

// dS'[GA (9, Zms 2) T (1)
Sm
- V(Gnvzm(pa Zmy z;n)vl ) Js(rl))]
+ | dS'[Gims(py 2m, 20) (w2 X M(5"))
J

VGV (s 2y 2 (1 X Mo(r)))]
= —E"(r); re S, )
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p 25y 2 s)M ("J)

/ dS'|G
—V( 88 p’ZS7

—u, X / ds'|G

- V(Gsm(p’zs’ m)vl .
= —AH™(r); res,. (10

The derivation of (9) and (10) from (1)—(8) requires some
analytical calculus, however this derivation is purely mathe-
matically and straightforward and is therefore omitted here.

The first integral (9) follows from the electric field boundary
condition at the microstrip circuit z = z,,. The left hand side
of this equation has two contributions. The first contribution
describes the tangential electric field excited by the electric
surface currents at the microstrip circuit z = 2/,. This
contribution is identical to the classical MPIE formulation
for microstrip circuits [10]. The second contribution describes
the tangential electric field excited by the equivalent magnetic
surface current at the slotline circuit z = z.. The orientation
of the magnetic current is rotated over 90° in the horizontal
plane as a consequence of the rotor operator which acts on
the electric vector potential F(r) in (1). The second integral
(10) follows from the magnetic field boundary condition at
the slotline circuits S,. The right hand sides of the integral
equations contain the incoming fields E™ and H'™.

The integral kernels Gaﬂ(p, Za,2j3) and Gaﬂ(p,za,zﬂ) in
(%) and (10) are simple functions of the Sommerfeld vector
(A and F) and scalar (V4 and Vr) potentials of a horizontal
electric and magnetic Hertzian dipole source in the layered
medium [22], [23]. The superindices A and V' denote the type
of coupling (A = current and V = charge coupling). The
subindices «, § = m, s denote the type of circuit level (m =
microstrip, s = slotline) where the excitation and observation
point are taken. For any fixed observation (2 = z,) and
excitation (z = 23) level in the layered medium, these integral
kernels are scalar functions of the lateral distance p between
the field and the source point. This property makes them very
suitable for tabulation.

Starting from the Sommerfeld scalar and vector potentials,
the resulting MPIE formulation (9), (10) for hybrid microstrip-
slotline structures uses only two scalar functions for each
excitation and observation level. An additional advantage
is that the integral kernels for the reciprocal interactions
are symmetrical, i.e. G44(p, 2a,%4) = G4.(p, 23,2,) and

aﬁ(p,za,zﬂ) = ﬁa(p,zﬁ, z.,) for any a,8 = m,s. This
follows from the Lorentz reciprocity theorem and allows for
a further reduction of the number of Green’s functions which
need to be calculated and tabulated.

A mesh of rectangular and triangular cells is used to
subdivide both the microstrip and the slotline structures.
Uniform rectangular cells are used in the major part of
the structure. allowing the possibility to take advantage of
translational symmetry to speed up the calculations. The
flexibility to model arbitrarily shaped junctions is preserved
by using triangles in those parts of the structure which do not

)V’ M. (r'))]

p7257 m)J( )

Js(r'))]
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fit into a rectangular mesh. The classical vector valued rooftop
expansion functions b;(r),7 = 1, - - -, M are used to model the
electric and magnetic currents in the rectangular mesh, while
triangular vector valued rooftop functions [1] are adopted in
the triangular cells. The triangular rooftop function basically
consists of a pair of linearily varying functions with triangular
support. The current distribution within each cell is expressed
in terms of its normal components on the sides of the cell. It
has been shown in [10] that this combination allows us to mix
rectangular and triangular cells in a self-consistent manner, i.e.
the normal component of the current density is required to be
continuous across the cell boundaries, avoiding the unphysical
occurence of Dirac-function line charges at the junction of
two adjacent cells. The analytical expressions of these rooftop
functions are given in [10] and will not be repeated here.

The system matrix equation Z-I = V follows from the test-
ing of the integral equations with the same rooftop expansion
functions (Galerkin testing). Although simpler test functions
can be used, the Galerkin technique is preferred because it
results in a symmetric Z-matrix. This implies that reciprocity,
which is a fundamental property of electromagnetic fields in a
linear, isotropic medium, is preserved in the approximation
process using Galerkin’s technique. This also implies that
only half of the Z-matrix elements must be calculated and
stored. This advantage is very important when electrically
large structures are modelled, since the available amount of
computer mermory places an upper limit to the dimensionality
of the Z-matrix and thus the complexity of the structures which
can be handled directly.

With Galerkin’s technique, each element in Z represents
the coupling or interaction between two expansion functions
and is given by a quadruple spatial interaction integral. An
efficient analytical calculation scheme for these quadruple
integrals will be discussed in Section III. The right hand
side vector V represents the excitation mechanism of the
structure. The solution of the matrix equation yields the electric
surface current distribution on the microstrip structures and the
magnetic surface current distribution on the slotline structures.

In order to find the circuit parameters, calibration port
transmission lines of finite length are added to the ports of the
structure (Fig. 1). The planar circuit is excited by mathematical
current sources located at the far ends of the calibration lines.
The source current distribution is modelled with the same
rooftop functions, but with impressed amplitude. This means
that the calculation of the V-matrix elements is essentialy the
same as the calculation of the Z-matrix elements. The circuit
port voltage V., and current I,; at port i follow from a
3D power-current (microstrip ports) or power-voltage (slotline
ports) calculation, depending on the type of the corresponding
port transmission line.

For a port ¢ on a microstrip level, an electric current density
Jp,(r) is impressed at the far end of the corresponding port
transmission line. The associated port current 1, ; follows from
the calculation of the flux of the impressed current density
over the width of the port transmission line. The complex
power P, ; launched into the system by the impressed current
source Jp,(r) can be calculated from the field solution by
integrating the scalar product of the tangential electric field
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Fig. 2. Rectangular and triangular expansion functions modelling the current
and charge contributions of hybrid microstrip-slotline interactions.

and the complex conjugate of the impressed port current. The
voltage V,; at the microstrip port is derived from this 3D
power-current calculation

Pyi= ”%// E(r) 'J;’i("') ds = %VPJI;J
s

P

Ipi = / Ip,i(r) - dn.
L

p:4%4

(11)

In (11), Sp,; is the region over which the excitation current
Jpi(r) is defined and E(7r) is the total electric field. Ly ; is
the integration path at the far end of the feedline and n is the
unit vector normal to Ly ,.

For a port i lying on a slotline level, a magnetic cur-
rent density M, ;(r) or port voltage V,,, is impressed. The
corresponding port current follows from a 3D power-voltage
calculation

P, =1 / H*(r) - M, () dS = 3V,
Sp,l

Voo :/ Mp,i('r)-dnzf E(r) - dt.
Lp. L.

The complete description of the circuit requires the simulation
of a number of independent excitation states equal to the
number of ports. The influence of the port transmission lines
and the port current sources are removed using an equivalent
circuit calibration technique. In this approach, each uncoupled
port transmission line is modelled as a general two-port, linear,
reciprocal network and characterized by the simulation of
a perfect through standard. This information is then used
to remove the port tranmission lines from the simulation

(12)
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results of the N-port circuit. This calibration technique has
the advantage over the more traditional VSWR methods [6]
that no reference is made to a current standing wave pattern
on the feed lines, allowing one to choose shorter feedlines.

II. CALCULATION OF THE
QUADRUPLE INTERACTION INTEGRALS

In this section, an analytical calculation scheme for the
quadruple interaction integrals is described. The elements of
the interaction matrix Z determine the coupling between two
expansion functions and follow from the integral equations (9)
and (10). Using elementary calculus, the hybrid microstrip-
slotline cell-cell interactions can be transformed into the
following general form:

Zij :// dS// as’ [Gﬁﬂ(r, )Ji(r) - J,(r)
K, K,
+ G, )V - Ti(r)V' - J;(r)]

with
bi(r); for K; € strip (o = mm,ms)
Ji(r) = or K; € slot {af = ss)
u; X bi(r); for K; € slot (aff = sm)
b;(r); for K; € strip (a8 = mm, sm)
Jj(r) = or K, € slot (aff = ss)
u, x b,(r); for K; € slot (a8 = ms).

(13)

In (13) r and 7’ are position vectors in K; and K;, the domains
of J;(r) and J;(r'). The well known vector-valued rooftop
functions b;{r) are used as test and expansion functions on the
microstrip and slotline levels. For the microstrip-slotline inter-
actions, the orientation of these rooftop functions is rotated
over 90 degrees on the slotline levels as a consequence of the
rotation of the magnetic current in (9) and the magnetic field
in (10). The charge functions V - b;(r) corresponding with the
classical rooftop functions are constant over the corresponding
cell. The charge functions V - (u, X b,(r)) corresponding
with the rotated rooftop functions however are lineary varying
Dirac line charges over the boundary of the corresponding
cell. This implies that for the microstrip-slotline interaction,
the surface integral in (13) is reduced to a line integral. Fig. 2
illustrates the impact of the rotation on the corresponding
charge functions for a rectangular and a triangular cell.

The spatial Green’s functions in (13) follow from an inverse
Hankel transformation of the spectral Green’s functions. The
latter result from the solution of the spectral TE, and a TM,
transmision line cascade associated with the layered medium
in which the planar structure is embedded. We refer to [22] and
[23] for more details on these calculations. In order to calculate
Z;,, the integral kernels G* and GV are precalculated and
curve-fitted into a local power series of the lateral distance
over the range of p determined by the minimum and maximum
distance between the two cells K, and K

max p

GVAr ) = Y gt (0= pe)
p=0

(14)
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where g, are the curve-fitting coefficients and py is the
distance between the centers of gravity of the two cells.
The number of power terms in (14) depends on the lateral
separation of the excitation and the observation cell and
the error that is allowed for the cell-cell coupling. For the
self-patch and nearby interactions, the 1/p singularity in the
Green’s functions is taken into account explicitly.

Since the rooftop functions b;(r) are linear functions in
(x,y) and the integral kernels are curve-fitted into polyno-
mials, the basic double surface integrals involved in (13) are
simplified and written in matrix notation as

QP(Ki,KJ,p):[[ dsl/] dS’:}/: 0o o

“(p—pg)*s  p=0,---,maxp (15)
where Qp is a 3 X 3 matrix of quadruple integrals. Matrix
notation is adopted here for mathematical convenience. The
quadruple integrals in (15) can be solved fully analytically
for K; and K; of general polygonal shape. In the analytical
treatment a distinction is made between close and distant
coupling.

For close coupling, the integration over the excitation cell
K, is performed analytically in the polar coordinates (p,f)
determined by the lateral separation between the excitation
and the observation point, i.e.  — 7, = p(cosfu, + sinfu,).
The integration domain K; (which can be of general polygonal

shape) is divided into a finite number of triangles K J(m), as

depicted in Fig. 3. All triangles K J(m) have in the observation
point 7 one vertex in common. The result of the integration
over the triangle K J(m) is written as the difference of two
“point”-contributions associated with the two cell vertex points
P 7.1 and P 1,2

QP(Kvi* K]7p) = Z[an)(Klﬂ Pj(7m)7p)
- QP (K. P p). 6
Each point-contribution still contains the integration over the
observation cell K;. After translation and rotation of the (z,y)
coordinate system to the local coordinate system (X (™) Y (™))
associated with each vertex point P](m) of side (m) (see
Fig. 3), the point-contributions are reduced to a combination
of two types of surface integrals. We have
Q™ (K,, P{™ . p)

J

= 3 Mpo(P™,k.1,p)Bpo(Ki k1 p)
k,i=0,1,2
E+I<2
+ > Mpa(P™ kD) Bro(Ki,k,Lp). (17)
k=1,2
1=0,1
k412
The explicit expressions of the Mpy and M p,2 coefficient
matrices in (17) follow from the coordinate transformation
by which the (x,y) coordinate system is replaced by the
(X (™) ¥ (m)) coordinate system. Their derivation is straight-
forward and is therefore omitted here. The surface integrals
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Bp and Bp in (17) are given by a recurrence relation as a
combination of three basis type integrals

Bp’()(Kz, k,l, —-1) =Bs(K,, k+ 1,1)
1
Bp,o(Kz,k,l,O) = —Z—Bl(Kl,k’ + 1,0+ 1)

1
Bpo(Ki. k,l,p) = 0r+2)

+p2BP,O(Ki’ k + zvlap - 2)]

[BQ(Kiﬂ k + 1wl + 17p)
(18)
and

1
Bpao(K;, k,1,—1) = _§BQ(K“ k.1, 1)

Bpo(Ki, b, 1,0) = =< [Bi(K, k42,1
+ B1(K,, k, 1 + 2)]
plp+1)
B Kmkala =TT AT oy
P,2( p) (p_|_2)(p+3)

[Bpa(Ku kb +2,0,p—2)
+ BP,2(K17 k7l + 27p - 2)] (19)

The basis surface integrals involved in (18) and (19) are of
the following form:

Buki k) = [ dsatys ki=01,2
K

3

Ba(K,, k,l,m) :// dSz*yt (Va2 + y2)™;
K,

k,1=0,1,2,---, m=1,2,---
Bs3(K;, k1) :// dSzFqt In(y + 22+ y2);
K,
k’l:0’1’27.." (20)

The analytical evaluation of these surface integrals is possible
for any value of the indices £, ! and m, making extensive use
of recurrence relations. The mathematics are very elaborate but
straightforward and will not be included here. The approach
described in this section has the advantage that recurrence
relations are obtained for the B, o and B, » integrals which
express the higher order power terms of p in terms of the
two lowest order ones, i.e. higher order terms are calculated
at very low computational cost. The use of such a recurrence
relation allows a very efficient implementation of the algo-
rithm and reduces the CPU-time needed for these calculations
significantly.

For distant coupling, the power term (p — p,)? is expanded
into a Taylor series around the distance between the centers
of gravity of the two cells

Order

p=pr=3 3

N=0 0<k,l,mn<N
k+l+m+n=N

(Y =y (@ — )" (Y - yp)"

Ck,l,m,n (P)(x - ‘rg)k

2L

where (z4,y,) is the center of gravity of the cell S; and
(x4, yy) is the center of gravity of the cell S,. The expansion
order in (21) depends on the distance between the two cells and



SERCU et al.: MIXED POTENTIAL INTEGRAL EQUATION TECHNIQUE FOR MULTILAYERED CIRCUITS

> X

Fig. 3. General picture of an observation cell K; and an excitation cell K;.

The excitation cell is divided into a finite number of triangles &"](-m).

TABLE I
MESH PARAMETERS USED IN THE SIMULATION
mesh parameters | cell sizes (microstrip) |  celf sizes (slotline) total number
Nt N Dy (mm) Dy{mm) Dy (mm) Dy{mm} of cells

mesh 1 1 20 2.00 2.54 110 1.875 38
mesh 2 2 40 1.00 1.27 0.55 1.00 150
mesh3 3 80 0.75 0.8467 0.3667 0.635 312
mesh 4 4 80 0.50 0.635 0275 050 600

the desired accuracy. The Taylor series expansion coefficients
in (21) are calculated as Nth order partial derivatives of the
power term (p.— pg)?

C = . ~
btmn(P) = FET] SR Syt6a oy
xr = xg
o0 4T @
yl el y;

Their calculation is straightforward for any value of p. Substi-
tuting (21) into (15), the quadruple integrals fall apart into the
product of two simple surface integrals of the type B;. Distant
cell-cell coupling terms are typically calculated a factor 30
faster than selfpatch coupling terms. This new scheme for the
distant cell-cell coupling elements further reduces the CPU-
time. It also eliminates the numerical noise which occurs in
the exact analytical solution technique of (15) for large cell-
cell separations, due to the round-off errors from the numerical
subtraction of two large, almost equal contributions.

IV. NUMERICAL RESULTS

A general computer program has been written to calculate
the S-parameters of multilayered hybrid microstrip-slotline
planar circuits. The MPIE is solved using rectangular and
triangular rooftop expansion functions. The stability and the
numerical convergence of this type of expansion functions has
already been adressed in several other papers [6], [101, [25].
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Fig. 4. (a) Geometry. of the four-port aperture-coupled microstrip lines.
(W = 2.54 mm, W, = 1.1 mm, L, = 15 mm, h = 0.762 mm, &, =
2.22.) (b) Top view of the meshes used in the simulations.

The numerical examples in this paper focus on the versatility
of the computer program to model general polygonal shaped
microstrip-slotline structures using a mixed mesh of rectangu-
lar and triangular cells. The simulation results for the structure
in the first example are included for validation purposes, since
we have found theoretical and measurement results in the
literature to compare with.

A. Aperture-Coupled Microstrip Lines

The first example shows the simulation results for two
parallel microstrip lines coupled by a small rectangular slot in a
common ground plane. The geometry of this hybrid microstrip-
slotline circuit is depicted in Fig. 4(a). The microstrip lines of
width W,,, = 0.254 mm are printed on a double layered di-
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Fig. 5. Frequency characteristics of the aperture-coupled microstrip lines. (a) Results with the different meshes. (b) Comparison with the theoretical

and measured data in [26].

electric substrate (h = 0.762 mm, ¢, = 2.22). The rectangular
slot aperture is rotated over 90 degrees with respect to the
propagation direction of the microstrip lines. The dimensions
of the slot aperture are L, = 15 mm and W, = 1.1 mm.
This structure has been analysed by Herscovici and Pozar in
[26] and by Wakabayashi and Itoh in [27]. The planar circuit
of Fig. 4(a) is modelled as a four-port network. In operation,
an input signal applied to port 1 of the top microstrip line

is partially coupled to the other microstrip line. This coupled
power is equally divided between the ports 3 and 4 with a
180° phase shift. This property of the circuit finds application
in the design of balanced mixer circuits and planar antenna
feed networks.

The hybrid microstrip-slotline structure of Fig. 4(a) is simu-
lated using a mixed mesh of rectangular cells with different cell
dimensions in the microstrip and slotline transmission lines.
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Fig. 6. (a) Geometry of the two-port aperture-coupled microstrip line tran-

sition. (b) Cross-sectional view of the current profile on the microstrip lines.

During the simulation, the frequency was swept between 2
GHz and 4 GHz. In order to estimate the error introduced by
the discretization of the structures, the simulation was repeated
using four different meshes with increasing cell density. The
mesh parameters which were used are listed in Table I. The
top view of these meshes is shown in Fig. 4(b). The mesh
parameters are the number of cells (N;) in the transverse
direction of the transmission lines and the number of cells
per wavelength (N;) in the longitudinal direction of the
transmission lines.

The calculated Sq1, S2; and S3; parameters are plotted in
Fig. 5(a) as a function of the frequency. It follows that the
theoretical results only show a small shift with increasing
cell density. The numerical results with the coarsest mesh are
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already within 1 dB accurate over the considered frequency
range. In Fig. 5(b), we have verified our theoretical results
by comparing them with the theoretical and the measured
data published by Herscovici and Pozar in [26]. The ripples
appearing in the measured data for the S1 and S3; parameters
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Fig. 9. Frequency characteristics of the two-port aperture-coupled microstrip line transition.

in [26] have a maximum amplitude of the order of 1 dB.
These ripples are attributed to the imperfect contact of the
two ground planes (the two substrates of the test structure in
[26] were fabricated with two separate ground planes) and
have been averaged out in Fig. 5(b). It follows from the plots
in Fig. 5(b) that the theoretical results agree within 1 dB with
the averaged experimental results.

B. Design of an X-Band Aperture-Coupled
Microstrip Line Transition

By terminating two of the microstrip lines with stubs, the
four-port network discribed in Section IV-A is reduced to
a two-port aperture-coupled microstrip line transition circuit
(Fig. 6(a)). This type of coupling circuit has been investigated
by Schiippert in [28] and by Van den Berg and Katehi in [29].
By proper choise of the various geometrical parameters of the
structure, the circuit can be designed to couple nearly all of
the input power to the output port within a certain frequency
band. This kind of circuit finds its application as a non-
contacting interconnection between multilayered integrated
circuits.

In this section, we will discuss the design of a symmetri-
cal, slot-coupled, microstrip line transition with a maximally
flat, 50-Ohm matched transmission characteristic in the X-
band (8-12 GHz). The transition connects two microstrip
tranmission lines, printed on each side of a double layered
standard alumina substrate (h = 25 mil, &, = 9.7) by
electromagnetic coupling through an aperture in the common
ground plane. This structure is depicted in Fig. 6. The width
of the transmission lines is 25 mil, corresponding to a 50-
Ohms impedance level. The design parameters are the width
W,, and the length L,, of the microstrip stubs, the width
W, and the length L, of the slotline aperture and the rotation
angle @ of the slotline with respect to the microstrip lines. The

use of a mixed rectangular-triangular mesh in the simulation
process, preserves the flexibility to change the geometrical
design parameters with respect to each other, without re-
strictions. In the following discussion, the longitudinal mesh
density is always choosen so that the longitudinal dimensions
of the cells do not exceed A,/30, where A, is the guided
wavelength at the considered frequency. This implies that
the longitudinal mesh parameter is always greater than N, >
30.

The initial width of the slotline aperture is choosen to be
W, = 5 mil, corresponding to a matched slotline (Zj ; = 50
Ohms) at the X -band central frequency (10 GHz). The initial
width of the microstrip stubs is choosen to be equal to the
microstrip line width, i.c. W,,, = 25 mil. A cross-sectional
view of the current distribution on the microstrip lines at 10
Ghz, is shown in Fig. 6(b) for different number of cells in the
transverse direction (N; = 2, 3, 4, 6, 8, 10). The dashed line
in the plots is the reference result obtained with a 2D cross-
section solver [30]. The singular edge behavior of the current is
better approximated as NV, increases. However, the numerical
results of the convergence study in the first example showed
that a mesh density with N; = 2 already gives sufficient
accurate S-parameters. In the following, the transverse mesh
parameter in the transmission lines is fixed at V; = 2.

Fig. 7(a) and (b) illustrate the effect of the electrical length
of the microstrip stubs L,,/A,;, and the electrical length of
the slotline aperture L./, on the transmission and reflection
coefficients. A,,, and A, are the guided wavelengths on the
microstrip and the slotline tranmission lines. The plots in
Fig. 7 were computed at the X-band central frequency. As
can be seen in Fig. 7(a), varying the electrical length of the
microstrip stubs has the effect of changing the position of the
current maxima on the microstrip lines and thus varying the
degree of coupling through the slot. This coupling is maximal
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for a stub length of L,, = A,,/4.0 at which the open at the
end of the stub is transformed to a virtual short just under the
slotline aperture. The same conclusion follows from varying
the electrical length of the slotline aperture (Fig. 7(b)). Here,
the coupling is maximal for a slotline length of L, = A,/2.0
at which the shorts at the ends of the aperture are transformed
to a virtual open or a magnetic current maxima just above the
microstrip lines. Fig. 7(b) also demonstrates that as the slotline
length increases in multiples of A,, the slotline aperture is
virtually short circuited and coupling is reduced.

Fig. 8 illustrates the effect of the rotation angle ¢ of the
slotline, for optimally choosen microstrip stub and slotline
lengths (L,, = A,,/4.0 and L, = A,2.0). It follows that
varying the rotation angle has very little effect on the cou-
pling performance in the range 45°< ¢ <135°. However, the
coupling performance is affected very strongly outside this
range and is totally reduced when the slotline aperture and the
microstrip lines are parallel (¢ = 0° or ¢ = 180°).

Finally, the frequency characteristic of the Ss;-parameter
is plotted in Fig. 9 for different widths of the microstrip
stub (W,,, = 15, 25, 45, 85 mil). The connection with the
microstrip feedline is provided by a small tapered section
of 45°. The other geometrical parameters are choosen such
that an optimal coupler performance is obtained at 10 GHz
(L = Am /4, W, = 5 mil, L, = A\/2 and ¢ = 90°). Also
shown in Fig. 9 is a detail of the mixed rectangular-triangular
mesh, which has been used to simulate the tapered microstrip
section for different widths of the microstrip stub. The plots
in Fig. 9 show that the coupler performance is very good in
the frequency range from 6-14 GHz and decreases very fast
outside this frequency range. The plots also indicate that the 3-
dB bandwidth of the coupler increases slightly with increasing
microstrip stub width.

V. CONCLUSION

We have presented a mixed potential integral equation
technique for the simulation of arbitrarily shaped hybrid
microstrip-slotline structures embedded in a multilayered
medium. The method of moments in combination with
Galerkin’s technique is applied to the solution of the mixed
potential integral equation in the spatial domain. A mixed
mesh consisting of different rectangular and triangular cells is
used to subdivide the structure. Rooftop expansion functions
are used to model the electric currents on the microstrip
structures and the magnetic currents in the slotline apertures.
The introduction of equivalent magnetic currents in the slotline
structures reduces the meshing of the infinite metallization
patterns at the slotline levels to the meshing of the finite
slotline apertures. A efficient calculation technique is used to
calculate the quadruple interaction integrals. Two examples of
hybrid microstrip-slotline circuits have been discussed. In the
first example, the simulation results for a microstrip-slotline
transition are compared with theoretical and measured data
from the literature. The second example illustrates the use of
the simulation technique in the design proces of a broadband
slot-coupled microstrip line transition.
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