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Abstract—In this paper, a mixed potential integral equation

(MPIE) formulation for hybrid microstrip-slotline multilayered

circuits is presented. This integral equation is solved with the
method of moments (MoM) in combination with Galerkin’s
method. The vector-valued rooftop functions defined over a
mixed rectangular-triangular mesh are used to model the electric
and magnetic currents on the microstrip and slotline structures.
An efficient calculation technique for the quadruple interaction
integrals between two cells in the system matrix equation is

presented. Two examples of hybrid microstrip-slotline circuits

are discussed. The first example compares the simulation results
for a microstrip-slotline transition with measured data, The

second example illustrates the use of the simulation technique

in the design process of a broadband slot-coupled microstrip line

transition.

I. INTRODUCTION

T HE METHOD of moments (MoM) has been widely used

for the analysis of general 3D structures [1] and pre-

dominantly planar microstrip and slotline structures [2]-[16].

Several commercial MoM software packages for the analysis

of microstrip and slotline circuits have emerged in recent years

[17] -[21]. Most of them have the restriction that a uniform

rectangular mesh is used. This implies that the designer

must carefully consider what cell size to use in order to

best approximate the geometry of interest with the resulting

metallization mesh.

Flexible meshes consisting of different types of rectangular

and/or triangular cells overcome the geometrical limitations

of a uniform mesh. Recently, some research groups have

started to investigate the use of triangular meshes and mixed

meshes of rectangles and triangles. Chang and Zheng [10] have

developed the P-mesh algorithm. This algorithm is derived

from the application of the MoM to a spatial domain mixed

potential integral equation governing the behavior of a mi-

crostrip circuit. Rectangular cells are used in the transmission

lines of the microstrip circuit, while triangular cells are used

to represent the microstrip discontinuities. The expansion and

test functions are the classical vector-valued rooftop functions

with rectangular or triangular support. Homg et al. [11] have

investigated the compensation of microstrip discontinuities

using vector-valued triangular subdomain functions as both
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expansion and testing functions in the MoM. In [11], the

electric field integral equation is solved in the spectral domain.

A mesh consists of one or more different types of triangles.

In this paper, a new research contribution to the application

of mixed meshes in the MoM modelling of planar circuits is

presented. The mixed potential integral equation (MPIE) for-

mulation is extended to govern the electromagnetic behavior

of hybrid microstrip-slotline multilayered circuits. Magnetic

surface currents are introduced at the slotline structures to

represent the tangential electric field in the slotline apertures.

A mixed mesh of rectangular and triangular cells is used to

model the electric and magnetic currents on the microstrip

and slotline structures. The Green’s function kernels can be

represented by classical Sommerfeld-type integrals. For these

integrals accurate and efficient numerical integration schemes

exist [22], [23].

The MPIE formulation has been favored over the electric

and magnetic field integral equation formulation [14], [15], In

comparison with the components of the electric field Green’s

dyadic, the Green’s functions in the MPIE formulation are less

singular, i.e. they only exhibit a l/p singularity instead of the

l/p3 singularity in [14] (p = IT – #I represents the lateral

distance between an observation point r- and an excitation

point T’). This makes the evaluation of the interactions between

two cells more simple and stable. Moreover, unlike the EFIE

Green’s dyadic components the MPIE Green’s functions do

not depend on the direction of the vector which connects

the excitation and observation point, i.e. the MPIE Green’s

functions are one-dimensional functions of p. Our algorithm

makes use of this property.

The MPIE is solved in the spatial domain using the method

of moments. A spatial domain approach makes it possible

to perform the computationally expensive calculation of the
Green’s functions once and store the data for future sim-

ulations of circuits printed on the same substrate. A mesh

maker has been developed to mesh any planar circuit of

arbitrary polygonal shape in triangles and rectangles. Using

this mesh the unknown electric and magnetic current density

can be expanded into rooftop functions. The application of

the Galerkin MoM reduces the computational burden to the

calculation of the spatial interaction integrals between two

cells in the interaction matrix equation Z .1 = V and to

the solution of this matrix equation. This solution provides the

amplitudes of the current expansion functions.

001 8-9480/95$04.00 @ 1995 IEEE



SERCU et al.: MIXED POTENTIAL INTEGRAL EQUATION TECHNIQUE FOR MULTILAYERED CIRCUITS

/ /
dielectric

interface

‘A / / --- -

ne circuit

ostrip circuitmulti

layered

medium

x

Fig. 1. Picture of a geueral microstrip-slotline planar structure embedded in

a multilayered medium.

An analytical calculation technique for the quadruple in-

teraction integrals between two cells in the system matrix

equation Z . I = V is discussed in Section III. For each

interaction integral the Green’s functions are approximated

using a local power series expansion of p. The number of

expansion terms depends on the distance between the cells.

With each power term a quadruple power-moment integral is

associated. An analytical technique has been developed for the

calculation of these quadruple integrals. Recurrence relations

make the calculations very efficient. For distant coupling a

Taylor’s series approximation of the powers of p is used to

speed up the calculations significantly.

The last section of the paper presents some numerical

simulation results for two practical hybrid microstrip-slotline

structures. The first example shows the simulation results for

a microstrip-slotline transition. These results are compared

with theoretical and measured data found in the literature. The

second example illustrates the use of the simulation technique

in the design proces of a broadband slot-coupled microstrip

line transition with a maximally flat transmission characteristic

in the X-band.

II. MEED POTENTIAL INTEGRAL EQUATION FORMULATION

FOR HYBRID MICROSTRIP-SLOTLINE STRUCTURES

The geometry of a general hybrid microstrip-slotline struc-

ture embedded in a multilayered medium is depicted in Fig. 1.

A microstrip circuit S’m consists of a finite metallization pat-

tern at a dielectric interface, while a slotline circuit Ss consists

of a finite aperture in a infinite metallization pattern. The

tangential electric field at the slotline circuits is represented
by an equivalent magnetic surface current density M.(r) =

u, x E(r). The vector UZ is the unit vector normal to the planar

structure. The introduction of an equivalent magnetic current
in the slotline structures reduces the meshing of the infinite

metallization patterns at the slotline levels to the meshing of

the finite slotline apertures.
An incoming electromagnetic field Ein, Hi” induces electric

surface currents JS(r) at the microstrip structures S~ and

magnetic surface currents A4. (r) at the slotline structures

Ss. In terms of vector and scalar potentials, the electric and

magnetic field due

where

and

1163

to these surface currents are given by [16]

E(r) = –jcJA(T-) – VVA(T-) – $7 X l’(r)

H(T) = –j(JF(r) – T@(r)+ ;V x A(T)

/

zA
A(r) = G (r, r’) . J.(T’) cM’

Sm

J
CF

F(r) = G (T-,r’) . M.(r’) dS’

s.

1
VA(T) =–~ I GVA(T, T’)V . J. (r) dS’

sm

v~(?-) =–+
I

GVF (r, T-’)V ~ikfs(r’) dS’
‘jW

s.

(1)

(2)

(3)

(4)

(5)

(6)

EA ==F
G (r, r’) and G (t-, r’) are the Green’s dyadics for the

magnetic and electric vector potentials A(T) and F(r) in

the layered medium and GVA (~, T-’) and GVF (T, T-’) are the

corresponding scalar Green’s functions for the electric and

magnetic scalar potentials. The scalar potentials VA(r) and

VF(T) are related with the vector potentials A(T) and F(r)
by the Lorentz gauge [16].

For the description of the horizontal fields in a multilayered

medium, the Sommerfeld potentials are very suitable [16].

With this type of potentials, the dyadic Green’s functions for

the magnetic and electric vector potentials are of the form

=4
G (r, r’) =?tG:(p, .z, i) + u,Wi(A .z>z“)

+ TG:.(P> Z, z’)u, (7)
==F
G (r, r’) =~tG;(p, z, z’) + u. V; Gj(P, z’>z’)

+ u. G:’(P, Z, Z% (8)

where ~t = UZUY + Uyuy is the tangential unit dyadic and P =

~(z – Z’)2 + (y – U’)z is the horizontal distance between the

source and the field point. Only three scalar potential functions

are needed to represent the nine components of the Green’s

dyadic for the vector potentials in a layered medium.
The mixed-potential integral equation formulation for hy-

brid microstrip-slotline circuits follows from the boundary

conditions of the tangential electric field at the microstrip

surface S~ and the tangential magnetic field at the surface S,

of the slotline apertures. Starting from the Sommerfeld forms

(7) and (8) for the vector potentials in the layered medium, we

can derive the following integral equations in the unknown

surface currents:

~
dS’[G:m(p, %, ~A)Js(~’)

sm

‘ )V’ . J.(r’))]– V(G~rn(P> zm, ~m

+

J

dS’[G:, (p, %, .z:)(UZ x ~s(~’))

s,

‘)V’ . (Uz x M.(?-’)))]– V(G~~(P, ~rn, Z,

= -Ein(r)i Tesm (9)
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1 cZS’[G:.(P, z., z:)~s(T’)

—V(G;; (P,z., zL)V . Js(T’))1

= –Alp(r) ; T~S~. (lo)

The derivation of (9) and (10) from (l)–(8) requires some

analytical calculus, however this derivation is purely mathe-

matically and straightforward and is therefore omitted here.

The first integral (9) follows from the electric field bounday

condition at the microstrip circuit z = Zm. The left hand side

of this equation has two contributions. The first contribution

describes the tangential electric field excited by the electric

surface currents at the microstrip circuit z = ,z~. This

contribution is identical to the classical MPIE formulation

for microstrip circuits [10]. The second contribution describes

the tangential electric field excited by the equivalent magnetic

surface current at the slotline circuit z = z:. The orientation

of the magnetic current is rotated over 90° in the horizontal

plane as a consequence of the rotor operator which acts on

the electric vector potential F(r) in (1). The second integral

(10) follows from the magnetic field boundary condition at

the slotline circuits S.. The right hand sides of the integral

equations contain the incoming fields IZin and Ifin.

The integral kernels G~p (P, Za, .z~) and G~p (P, z~, .z~) in

(9) and (10) are simple functions of the Sommerfeld vector

(A and F) and scalar (VA and VF) potentials of a horizontzd

electric and magnetic Hertzian dipole source in the layered

medium [22], [23]. The superinduces A and V denote the type

of coupling (A = current and V = charge coupling). The

subindices a, ~ = m,s denote the type of circuit level (m =

microstrip, s = slotline) where the excitation and observation

point are taken. For any fixed observation (z = za) and

excitation (z = z~) level in the layered medium, these integral

kernels are scalar functions of the lateral distance p between

the field and the source point. This property makes them very

suitable for tabulation.

Starting from the Sommerfeld scalar and vector potentials,

the resulting MPIE formulation (9), (10) for hybrid microstrip-

slotline structures uses only two scalar functions for each

excitation and observation level. An additional advantage

is that the integral kernels for the reciprocal interactions
are symmetrical, i.e. Gflfl(p, Za, z~) = G$a(p, ~p, ~~) ~d

G~@(p, za, z~) = G~a(p, Zfl, z~) for any a,fl = m,s. This

follows from the Lorentz reciprocity theorem and allows for

a further reduction of the number of Green’s functions which

need to be calculated and tabulated.

A mesh of rectangular and triangular cells is used to

subdivide both the microstrip and the slotline structures.

Uniform rectangular cells are used in the major part of

the structure, allowing the possibility to take advantage of

translational symmetry to speed up the calculations. The

flexibility to model arbitrarily shaped junctions is preserved

by using triangles in those parts of the structure which do not

fit into a rectangular mesh. The classical vector valued rooftop

expansion functions bi (r), z = 1, . . . . ill are used to model the

electric and magnetic currents in the rectangular mesh, while

triangular vector valued rooftop functions [1] are adopted in

the triangular cells. The triangular rooftop function basically

consists of a pair of linearily varying functions with triangular

support. The current distribution within each cell is expressed

in terms of its normal components on the sides of the cell. It

has been shown in [10] that this combination allows us to mix

rectangular and triangular cells in a self-consistent manner, i.e.

the normal component of the current density is required to be

continuous across the cell boundaries, avoiding the unphysical

occurence of Dirac-function line charges at the junction of

two adjacent cells. The analytical expressions of these rooftop

functions are given in [10] and will not be repeated here.

The system matrix equation Z.1 = V follows from the test-

ing of the integral equations with the same rooftop expansion

functions (Galerkin testing). Although simpler test functions

can be used, the Galerkin technique is preferred because it

results in a symmetric Z-matrix. This implies that reciprocity,

which is a fundamental property of electromagnetic fields in a

linear, isotropic medium, is preserved in the approximation

process using Galerkin’s technique. This also implies that

only half of the Z-matrix elements must be calculated and

stored. This advantage is very important when electrically

large structures are modelled, since the available amount of

computer memory places an upper limit to the dimensionality

of the Z-matrix and thus the complexity of the structures which

can be handled directly.

With Galerkin’s technique, each element in Z represents

the coupling or interaction between two expansion functions

and is given by a quadruple spatial interaction integral. An

efficient analytical calculation scheme for these quadruple

integrals will be discussed in Section III. The right hand

side vector V represents the excitation mechanism of the

structure. The solution of the matrix equation yields the electric

surface current distribution on the microstrip structures and the

magnetic surface current distribution on the slotline structures.

In order to find the circuit parameters, calibration port

transmission lines of finite length are added to the ports of the

structure (Fig. 1). The planar circuit is excited by mathematical

current sources located at the far ends of the calibration lines.

The source current distribution is modelled with the same

rooftop functions, but with impressed amplitude. This means

that the calculation of the V-matrix elements is essential the

same as the calculation of the Z-matrix elements. The circuit

Port voltage VP,, and current IP,~ at port i follow from a
3D power-cument (microstrip ports) or power-voltage (slotline

ports) calculation, depending on the type of the corresponding

port transmission line.

For a port z on a microstrip level, an electric current density

Jp,, (T) is impressed at the far end of the corresponding port

transmission line. The associated port current IP,i follows from

the calculation of the flux of the impressed current density

over the width of the port transmission line. The complex

power PP,~ launched into the system by the impressed current
source Jp,, (T) can be calculated from the field solution by

integrating the scalar product of the tangential electric field
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Fig. 2. Rectangular and triangular expansion functions modelling the current

and charge contributions of hybrid microstrip-slotline interactions.

and the complex conjugate of the impressed port current. The

voltage VP,; at the microstrip port is derived from this 3D
power-current calculation

Pp,i = –;
J

lj(T-) . Jj,i(r) dS = ;Vp,Jj,i

s P,%

IP,i = J Jp,i(T) ~h (11)
L P>.

In (11), SP,i is the region over which the excitation current

Jp,i (r) is defined and E(T) is the total electric field. LP,i is

the integration path at the far end of the feedline and n is the

unit vector normal to LP,t.

For a port i lying on a slotline level, a magnetic cur-

rent density AIP,i (T) or port voltage VP,. is impressed. The

corresponding port current follows from a 3D power-voltage

calculation

JJ
sP,.

VP>, =
/

Mp,i(T) . dn =
/

E(T) . dt. (12)
L P., L P..

The complete description of the circuit requires the simulation

of a number of independent excitation states equal to the
number of ports. The influence of the port transmission lines

and the port current sources are removed using an equivalent

circuit calibration technique. In this approach, each uncoupled

port transmission line is modelled as a general two-port, linear,

reciprocal network and characterized by the simulation of

a perfect through standard. This information is then used

to remove the port transmission lines from the simulation

results of the N-port circuit. This calibration technique has

the advantage over the more traditional VSWR methods [6]

that no reference is made to a current standing wave pattern

on the feed lines, allowing one to choose shorter feedlines.

III. CALCULATION OF THE

QUADRUPLE INTERACTION INTEGRALS

In this section, an analytical calculation scheme for the

quadruple interaction integrals is described. The elements of

the interaction matrix Z determine the coupling between two

expansion functions and follow from the integral equations (9)

and (10). Using elementary calculus, the hybrid microstrip-

slotline cell-cell interactions cm be transformed into the

following general form:

‘“=[ ‘sl dS’ [G$(T, T’)Ji(T) “ Jj (T’)

K. KJ

+ G~o(T, r’)V . Ji(T-)V’ . Jj(T’)]

with

{

bi (T); for K; E strip (cx,8 = mm, ms)

Ji(r-) = or Ki E slot (cr~ = SS)

‘uZ x b;(r); for ~~ C slot (a@ = sm)

{

bj (T); for Kj ~ strip (cs~ = mm, sm)

Jj(T) = or Kj c slot (q/3 = SS)

u, x bj (T); for Kj E slot (CUO= ins).

(13)

In (13) T and T’ are position vectors in Ki and Kj, the domains

of Ji (T) and Jj (T’). The well known vector-valued rooftop

functions bi (T) are used as test and expansion functions on the

microstrip and slotline levels. For the microstrip-slotline inter-

actions, the orientation of these rooftop functions is rotated

over 90 degrees on the slotline levels as a consequence of the

rotation of the magnetic current in (9) and the magnetic field

in (10), The charge functions V. bi (T) corresponding with the

classical rooftop functions are constant over the corresponding

cell. The charge functions V . (uZ x b,(T)) corresponding

with the rotated rooftop functions however are lineary varying

Dirac line charges over the boundary of the corresponding

cell. This implies that for the microstrip-slotline interaction,

the surface integral in (13) is reduced to a line integral. Fig. 2

illustrates the impact of the rotation on the corresponding

charge functions for a rectangular and a triangular cell.

The spatial Green’s functions in (13) follow from an inverse

Hankel transformation of the spectral Green’s functions. The

latter result from the solution of the spectral TEZ and a TMZ

transmission line cascade associated with the layered medium

in which the planar structure is embedded. We refer to [22] and

[23] for more details on these calculations. In order to calculate

Zij, the integral kernels GA and Gv are precalculated and

curve-fitted into a local power series of the laterat distamce

over the range of p determined by the minimum and maximum

distance between the two cells K, and Kj

max w

Gv’A(r-, T’) = ~’ g~A(~ – Pg)p (14)
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where gP~’-~ are the curve-fitting coefficients and pg is the

distance between the centers of gravity of the two cells.

The number of power terms in (14) depends on the lateral

separation of the excitation and the observation cell and

the error that is allowed for the cell-cell coupling. For the

self-patch and nearby interactions, the I/p singularity in the

Green’s functions is taken into account explicitly.

Since the rooftop functions hi (r-) are linear functions in

($, y) and the integral kernels are curve-fitted into polyno-

mials, the basic double surface integrals involved in (13) are

simplified and written in matrix notation as

r. 7

f2P(~i>~, >P)=
j ‘sl’Y‘f]” “ “’]
.(p - Pg;;;p= O,..., maxp (15)

where QP is a 3 x 3 matrix of quadruple integrals. Matrix

notation is adopted here for mathematical convenience. The

quadmple integrals in (15) can be solved fully analytically

for Ki and Kj of general polygonaJ shape. In the analytical

treatment a distinction is made between close and distant

coupling.

For close coupling, the integration over the excitation cell

KJ is performed analytically in the polar coordinates (p, 0)

determined by the lateral separation between the excitation

and the observation point, i.e. r-t – r-~ = p(cos19uZ + sin6%Y).

The integration domain Kj (which can be of general polygonal

shape) is divided into a finite number of triangles K~m), as

depicted in Fig. 3. All triangles K~m) have in the observation

point T one vertex in common. The result of the integration

over the triangle K~m) is written as the difference of two

“point’’-contributions associated with the two cell vertex points

Pl,l and P,,z

Each point-contribution still contains the integration over the

observation cell Ki. After translation and rotation of the ($, y)

coordinate system to the local coordinate system (X[m), Y(n))

associated with each vertex point P}m) of side (m) (see

Fig. 3), the point-contributions are reduced to a combination

of two types of surface integrals. We have

Q!m)(K , P’m)>P)

‘E
(m) k z ~)~F,o(Mz, k> ~>P)MP.O(PJ , , ,

k,l=o,l,2

k+l<2

+ & ~P,2(@m)1 ~> W3P,2(&, k, l, P). (17)

l=o~;
k+l<2

The explicit expressions of the iWp,o and lkfP,2 coefficient

matrices in (17) follow from the coordinate transformation

by which the (x, g) coordinate system is replaced by the
(X(m’), Y(m’)) coordinate system. Their derivation is straight-

forward and is therefore omitted here. The surface integrals

l?P,o and l?p,z in (17) are given by a recurrence relation as a

combination of three basis type integrals

13P,o(K,, k,l, -1) =133( Kz, k+ 1,1)

13p,0(K,, k,l,0) =~131(K@+ 1,1+ 1)

l?p,o(Ki, k, l,p) =
(P+ l;(p+2)[~’(Ki’k+ 1,1+ l,p)

+P2~P,O(%k + %l>p – 2)] (18)

and

13p,2(Ki, k,l, –1) = –+2(K,,k, t, 1)

13p,2(Ki, k,l,0) =–jl?(K,, k+2,1)

+B1(K,, k,l+2)]

~P,2(K, ~, ZIP) =
P(P + 1)

(P+2)(P +3)

~ [Bp,2(K,, k + 2,1,p - 2)

+ I?P,2(K,1 k,l + 2,P – 2)]. (19)

The basis surface integrals involved in (18) and (19) are of

the following form:

Bl(lfi,k,l) =
/

dSxkyl; k,l=o,l,2,...

K,

132( K,, k,l,7n) =
I

dSzky~(~Z)”;

K,

k,l=o,l,2,..., rn=l,2,...

l?3(Ki, k,i) =
[

dS~kyl in (y + ~-);

K,

k,l=o,l> 2,.... (20)

The analytical evaluation of these surface integrals is possible

for any value of the indices k, 1 and m, ,making extensive use

of recurrence relations. The mathematics are very elaborate but

straightforward and will not be included here. The approach

described in this section has the advantage that recurrence

relations are obtained for the EIP,O and BP,2 integrals which

express the higher order power terms of p in terms of the

two lowest order ones, i.e. higher order terms are calculated

at very low computational cost. The use of such a recurrence

relation allows a very efficient implementation of the algo-

rithm and reduces the CPU-time needed for these calculations

significantly.

For distant coupling, the power term (p – pg)~ is expanded

into a Taylor series around the distance between the centers

of gravity of the two cells

Order

(P-P,)’= ~ ~ %l)m,n(p)(~ – Zg)k

IV=O o<k,l,7rl,n<N
k+l+m+~zN

- (y - yg)’(z’ - z:)~(y’ - y:)~ (21)

where (~g, yg ) is the center of gravity of the cell Si and

(z~, y~) is the center of gravity of the cell S3. The expansion

order in (21) depends on the distance between the two cells and
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Fig. 3. General picture of an observation cell f(i andanexcitationcell ~~j.

The excitation cell is divided into a finite numberof triangles1{$~).

TABLE I
MESH PARAMETERS USED m THE SIMULATION

I mssh 1

mesh 2

I
mesh 3

mesh 4

mesh parameters cell sizes (mlcrostrip) cell sizes (slothne) total number

M NI D. (mm) Dv(mm) DX (mm) Dv(mm) of cells

i 20 2.00 2.54 1,10 1,875 3a

2 40 1.00 1.27 0,55 1.)0 150

3 EQ 0.75 0,0467 0.3667 0.635 312

4 80 050 0.635 0.275 0.50 600

I I I I I I

the desired accuracy. The Taylor series expansion coefficients

in (21) are calculated as Nth order partial derivatives of the

power term (p – pg)p

“ ((P- /%)’):1:!$
o

(22)

Their calculation is straightforward for any value of p. Substi-

tuting (21) into (15), the quadruple integrals fall apart into the

product of two simple surface integrals of the type Bl. Distant

cell-cell coupling terms are typically calculated a factor 30

faster than selfpatch coupling terms. This new scheme for the

distant cell-cell coupling elements further reduces the CPU-

time. It also eliminates the numerical noise which occurs in

the exact analytical solution technique of (15) for large cell-

cell separations, due to the round-off errors from the numerical

subtraction of two large, almost equal contributions.

IV. NUMERICAL RESULTS

A general computer program has been written to calculate

the S-parameters of multilayered hybrid microstrip-slotline

planar circuits. The MPIE is solved using rectangular and

triangular rooftop expansion functions. The stability and the

numerical convergence of this type of expansion functions has

already been adressed in several other papers [6], [10], [25].

(3+ I

!,, 1 ,x-@
1/ vVm

v
(a)

mesh 1 P,,

b1 slotline

-J
mesh 2 ~

mesh 4

(b)

Fig. 4. (a) Geometry of the four-port aperture-coupled rnicrostrip lines.

(PV~ = 2.54 mm, W. = 1.1 mm ~. = 15 ~, ~ = 0.762 mm, e, =
2.22.) (b) Top view of the meshesused in the simulations.

The numerical examples in this paper focus on the versatility

of the computer program to model general polygonal shaped

microstrip-slotline structures using a mixed mesh of rectangu-

lar and triangular cells. The simulation results for the structure

in the first example are included for validation purposes, since

we have found theoretical and measurement results in the

literature to compare with.

A. Aperture-Coupled Microstrip Lines

The first example shows the simulation results for two

parallel microstrip lines coupled by a small rectangular slot in a

common ground plane. The geometry of this hybrid microstrip-

slotline circuit is depicted in Fig. 4(a). The microstrip lines of

width IVn = 0.254 mm are printed on a double layered di-
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Fig. 5. Frequency characteristics of the aperture-coupled microstrip lines,
and measured data in [26].

(a) Results with the different meshes. (b) Comparison with the theoretical

electric substrate (h = 0.762 mm, ET = 2.22). The rectangular

slot aperture is rotated over 90 degrees with respect to the

propagation direction of the microstrip lines. The dimensions

of the slot aperture are L. = 15 mm and W. = 1.1 mm.

This structure has been analysed by Herscovici and Pozar in

[26] and by Wakabayashi and Itoh in [27]. The planar circuit

of Fig. 4(a) is modelled as a four-port network. In operation,

an input signal applied to port 1 of the top microsttip line

is partially coupled to the other microstrip line. This coupled

power is equally divided between the ports 3 and 4 with a

180° phase shift. This property of the circuit finds application

in the design of balanced mixer circuits and planar antenna

feed networks.

The hybrid microstrip-slotline structure of Fig. 4(a) is simu-

lated using a mixed mesh of rectangular cells with different cell

dimensions in the microstrip and slotline transmission lines.
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During the simulation, the frequency was swept between 2

GHz and 4 GHz. In order to estimate the error introduced by

the discretization of the structures, the simulation was repeated

using four different meshes with increasing cell density. The

mesh parameters which were used are listed in Table I. The

top view of these meshes is shown in Fig. 4(b). The mesh

parameters are the number of cells (lV~) in the transverse
direction of the transmission lines and the number of cells

per wavelength (Nl ) in the longitudinal direction of the

transmission lines.

The calculated S1l, S21 and S31 parameters are plotted in

Fig. 5(a) as a function of the frequency. It follows that the

theoretical results only show a small shift with increasing

cell density. The numerical results with the coarsest mesh are

1.0

0,0

1.0

0.0

0.0 0.5

(a)

0.0 LA 1.0
(b)

Fig. 7. (a) Vnriation of IS11 I nnd IS2 ~I with the microstrip stub electrical

length. (b) Variation of IS11 I and \SZ 1 I with the slotline aperture electrical
length.

Fig.
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8. Variation of IS1 I I and ISZ I I with the slotline rotation angle.

already within 1 dB accurate over the considered frequency

range. In Fig. 5(b), we have verified our theoretical results

by comparing them with the theoretical and the measured

data published by Herscovici and Pozar in [26]. The ripples

appearing in the measured data for the S21 and S31 parameters
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in [26] have a maximum amplitude of the order of 1 dB.

These ripples are attributed to the imperfect contact of the

two ground planes (the two substrates of the test structure in

[26] were fabricated with two separate ground planes) and

have been averaged out in Fig. 5(b). It follows from the plots

in Fig. 5(b) that the theoretical results agree within 1 dB with

the averaged experimental results.

B. Design of an X-Band Aperture-Coupled

Microstrip Line Transition

By terminating two of the microstrip lines with stubs, the

four-port network discribed in Section IV-A is reduced to

a two-port aperture-coupled microstrip line transition circuit

(Fig. 6(a)). This type of coupling circuit has been investigated

by Schiippert in [28] and by Van den Berg and Katehi in [29].

By proper choise of the various geometrical parameters of the

structure, the circuit can be designed to couple nearly all of

the input power to the output port within a certain frequency

band. This kind of circuit finds its application as a non-

contacting interconnection between multilayered integrated

circuits.
In this section, we will discuss the design of a symmetri-

cal, slot-coupled, microstrip line transition with a maximally

flat, 50-Ohm matched transmission characteristic in the X-

band (8–12 GHz). The transition connects two microstrip

transmission lines, printed on each side of a double layered

standard alumina substrate (h = 25 roil, c. = 9.7) by

electromagnetic coupling through an aperture in the common

ground plane. This structure is depicted in Fig. 6. The width

of the transmission lines is 25 roil, corresponding to a 50-

Ohms impedance level. The design parameters are the width

Wm and the length LW, of the microstrip stubs, the width

W. and the length L. of the slotline aperture and the rotation

angle p of the slotline with respect to the microstrip lines. The

use of a mixed rectangular-triangular mesh in the simulation

process, preserves the flexibility to change the geometrical

design parameters with respect to each other, without re-

strictions. In the following discussion, the longitudinal mesh

density is always choosen so that the longitudinal dimensions

of the cells do not exceed AJ30, where Ag is the guided

wavelength at the considered frequency. This implies that

the longitudinal mesh parameter is always greater than IVl >

30.

The initial width of the slotline aperture is choosen to be

W, = 5 roil, corresponding to a matched slotline (Zo,, = 50

Ohms) at the X-band central frequency (10 GHz). The initial

width of the microstrip stubs is choosen to be equal to the

microstrip line width, i.e. Wm = 25 roil. A cross-sectional

view of the current distribution on the microstrip lines at 10

Ghz, is shown in Fig. 6(b) for different number of cells in the

transverse direction (IVt = 2, 3, 4, 6, 8, 10). The dashed line

in the plots is the reference result obtained with a 2D cross-

section solver [30]. The singular edge behavior of the current is

better approximated as iVt increases. However, the numerical

results of the convergence study in the first example showed

that a mesh density with Nz = 2 already gives sufficient

accurate S-parameters. In the following, the transverse mesh

parameter in the transmission lines is fixed at iVt = 2.

Fig. 7(a) and (b) illustrate the effect of the electrical length

of the microstrip stubs Lm /Am and the electrical length of

the slotline aperture L. /A~ on the transmission and reflection

coefficients. Jm and AS are the guided wavelengths on the

microstrip and the slotline transmission lines. The plots in

Fig. 7 were computed at the X-band central frequency. As

can be seen in Fig. 7(a), varying the electrical length of the

microstrip stubs has the effect of changing the position of the

current maxima on the microstrip lines and thus varying the

degree of coupling through the slot. This coupling is maximal
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for a stub length of Lm = ~J4.O at which the open at the

end of the stub is transformed to a virtual short just under the

slotline aperture. The same conclusion follows from varying

the electrical length of the slotline aperture (Fig. 7(b)). Here,

the coupling is maximal for a slotline length of L, = }J2.O

at which the shorts at the ends of the aperture are transformed

to a virtual open or a magnetic current maxima just above the

microstrip lines. Fig. 7(b) also demonstrates that as the slotline

length increases in multiples of A., the slotline aperture is

virtually short circuited and coupling is reduced.

Fig. 8 illustrates the effect of the rotation angle p of the

slotline, for optimally choosen microstrip stub and slotline

lengths (Lm = Am/4.0 and L, = AJ2.0). It follows that

varying the rotation angle has very little effect on the cou-

pling performance in the range 45°< p <135°. However, the

coupling performance is affected very strongly outside this

range and is totally reduced when the slotline aperture and the

microstrip lines are parallel (~ = 0° or p = 1800).

Finally, the frequency characteristic of the S21-parameter

is plotted in Fig. 9 for different widths of the microstrip

stub (Wm = 15, 25, 45, 85 roil). The connection with the

microstrip feedline is provided by a small tapered section

of 450. The other geometrical parameters are choosen such

that an optimal coupler performance is obtained at 10 GHz

(Lm = An/4, W, = 5 roil, L. = AJ2 and ~ = 900). Also

shown in Fig. 9 is a detail of the mixed rectangular-triangular

mesh, which has been used to simulate the tapered microstrip

section for different widths of the microstrip stub. The plots

in Fig. 9 show that the coupler performance is very good in

the frequency range from 6-14 GHz and decreases very fast

outside this frequency range. The plots also indicate that the 3-

dB bandwidth of the coupler increases slightly with increasing

microstrip stub width.

V. CONCLUSION

We have presented a mixed potential integral equation

technique for the simulation of arbitrarily shaped hybrid

microstrip-slotline structures embedded in a multilayered

medium. The method of moments in combination with

Galerkin’s technique is applied to the solution of the mixed

potential integral equation in the spatial domain. A mixed

mesh consisting of different rectangular and triangular cells is

used to subdivide the structure. Rooftop expansion functions

are used to model the electric currents on the microstrip

structures and the magnetic currents in the slotline apertures.

The introduction of equivalent magnetic currents in the slotline

structures reduces the meshing of the infinite metallization

patterns at the slotline levels to the meshing of the finite

slotline apertures. A efficient calculation technique is used to
calculate the quadruple interaction integrals. Two examples of

hybrid microstrip-slotline circuits have been discussed. In the

first example, the simulation results for a microstrip-slotline

transition are compared with theoretical and measured data

from the literature. The second example illustrates the use of

the simulation technique in the design proces of a broadband

slot-coupled microstrip line transition.
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